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1. Introduction

Peel and lap shear tests are simple and widely-used methods of

measuring the strength of an adhesive bond. But the results are not

easily compared. The peel force per unit width of the joint can be

directly interpreted as an energy Ga required to bring about

separation per unit area of interface. On the other hand, it is usual

to describe the strength of a lap shear joint by the mean shear stress

causing fracture. But the joint does not fail in shear by

simultaneous rupture of the entire bonded area. Instead, the bond

fails first at a highly stressed site, usually at one edge, and

failure then spreads across the interface.

Kendall calculated the strength of a lap-shear joint on this

basis (1,2), using Griffith's energy-balance approach, and showed th"t

the fracture energy deduced from lap shear measurements on model

joints agreed well with that given by a simple peeling experiment.

However, Kendall assumed that the stress-strain relationship in

tension for the two adhering layers was a linear one and the strains

were small. These assumptions are not necessarily true for thin

layers, which might be stretched to large strains during bonding or

detachment. The theory is reviewed here and measurements on

extensible rubber layers are compared with predictions made with and

without the assumption of small strains.

If one of the adherends is stretched when it is bonded to the

other, the joint is made more resistant to separation, at least for

prestrains below a critical level at which the layers spontaneously
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separate on release. Both the strengthening effect of initial

prestrains and the critical degree of prestrain at which spontaneous

delamination occurs can be calculated on the basis of elastic strain

energy contributions to the work of separation, assuming that the

intrinsic strength of adhesion is unchanged by prestretching. Some

measurements are reported of the peel and lap shear strengths of

joints prepared by bonding a stretched rubber strip to an unstretched

one. Such joints can be regarded as models of adhesive joints

prestressed due to a variety of causes; for example, by shrinkage of

one layer on setting or by differential thermal contraction.

2. Theoretical Considerations

Work is expended in two ways in peeling. First, the detached

strip is stretched, to a strain of e, say, requiring input of strain

energy U per unit volume. If it was already stretched to a strain of

e in the bonded state, before detachment, with a corresponding amount*I
of strain energy U per unit volume stored in it, then the additional

energy supplied is U - U . Secondly, an amount of energy Ga is

expended per unit area of interface in separating the adhering

surfaces. (It is assumed that Ga is the same for stretched and

unstretched adhering surfaces, but we note that unit area of surface

becomes (1 + e*) 1/2 in the stretched state.) Thus, the work done by

the peel force F during detachment of a strip of unit length in the

unstrained state (given by Fx where x is the displacement of the point

of application of the force) is equal to the sum of these two terms,



4

* 1/2 *
F x = CGa (1 + e ) + (U -U )t]w (1)

where t is the unstrained thickness and w the unstrained width of the

detaching layer.

From geometrical considerations (Figure 1) X is given by

x = + e - (1 + e )cos 8) (2)
where 8 is the peel angle. The fracture energy Ga is then obtained

from Equations 1 and 2,
* 1/2 * *

Ga(1 + e*) = (F/w)[l + e - (1 + e )cos 8] - (U - U )t. (3)

In the case of linear elasticity, the strains e and e are given

by F/wtE and F /wtE, where E is the tensile (Young) modulus of the

strips, F is the residual tension in the strip before separation,

corresponding to the strain e , and the strain energies U and U are

given by (F/wt) 2 2E) and (F*/w)2 /2E. Thus, for peeling a

linearly-elastic strip, the fracture energy is given by
G (1+ * F2 *

a( + e) 1 2 = (F/w)[l - (1 + e )cos 8] + (F + F* 2)/2w 2tE. (4)

If the strip is not prestressed, e = F = U = 0, and Equations 3

and 4 become

G = (F/w)[i + e - cos 8] - Ut (5)

and

Ga = (F/w)[i - cos 8] + F 2/2w 2tE. (6)

If the strip is relatively inextensible, the second term in

Equations 5 and 6 is negligibly small in comparison with the first,

unless 0 is close to zero. The relation for the fracture energy then

takes its simplest form

Ga = (F/w)[i - cos 8]. (7)

, .i I I I Ia
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For lap shear debonding, 0 = 0 in Equation 3. Considering only

one layer of the sandwich to be extensible, the fracture energy can be

expressed as:
* 1/2 * *

G (1 + e*) = (F/w)(e - e ) - (U - U )t (8)a

Again, if it is assumed that the layer is linearly-elastic, this

relation becomes

Ga ( + e*) 1 /2 = (F - F*) 22 . (9)

And if the layer was not prestressed at the time the joint was made,

e =F = 0, and

G a= F2/2w2tE. (10)

When two strips are pulled apart, Figure 2, with strain energy

imparted to both, then Equation 8 becomes
* 1/2 [U-* i+e Ult(i

Ga(1 + e*) = (F/w)(e - e2 ) - [U Ue 2-(1+ e )U1t (11)

where e2 denotes the strain in the bonded portion of the prestressed

strip during detachment and ei denotes the corresponding strain in the

other strip, Figure 3. They are related to the prestrain e at the

time of bonding and to the detachment force F by the relations

e = e + (1 + e )e1  (12)

and

F =F 1 + F2  (13)2I
where F1 and F 2 are the tensile forces in the two bonded strips.

For linearly-elastic strips, Equation 11 becomes

Sa(1 + e*) = (F - F )2/2(2 + e )w 2tE. (14)

When the prestrain e*is zero, l = 2' E = 2, and U = UEq n 1-e 2

Equations 11 and 14 then become
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Ga = (F/w) (e - e1 ) - (U -- 2Ue) e (15)

G a = (F/w) 2/4tE. (16)

The above relations for fracture force based on linear elastic

behavior (Equations 9 and 14) were originally derived by Kendall (3)

with e assumed to be much smaller than unity. He pointed out that the

detachment force F increased linearly with the magnitude of the

preload F , up to a value of F equal to the original failure force.

For values of F of this amount or greater, detachment will occur

spontaneously on releasing the joint from the force F applied during

bonding.

We now compare the predictions of these various relations with

experimental measurements of the forces required to detach soft rubber

layers, adhering together.

3. Experimental Details

Sheets of vulcanized rubber having a wide range of thickness were

prepared using the mix recipe and vulcanization conditions given in

the Appendix. Experimental relations between tensile stress and

elongation e, and between elastic strain energy a per unit volume and

e, are shown in Figures 4 and 5. Strips about 20 mm wide and 200 mm

long were cut from the rubber sheets and coated with a thin layer,

about 0.2 mm thick, of an acrylic adhesive emulsion (Monsanto Gelva

Multipolymer Resin Emulsion RA-2397, kindly supplied by

Mr.J.M.Questel, Adhesive Consultants, Inc., Akron, Ohio). After

drying in an air oven at 500C for 2 h, two similar coated rubber



7

strips were pressed into contact to form a model joint.

Measurements of peel force and lap shear failure force were made at

the same rate of propagation of the debond, about 0.1 mm/sec. In

peeling, one rubber layer was bonded to a steel plate and the other

layer was peeled away from it at an angle of 450, Figure 1. Lap

shear measurements were carried out symmetrically, as shown in

Figure 2.

The experiments were carried out at room temperature, about 25 0C.

4. Experimental Results and Discussion

(i) Joints prepared without a prestress

(a) Peel strength

The measured peel forces and lap shear failure forces are given in

Tables 1 and 2 for rubber layers having thicknesses ranging from 0.6

to 12 mm. Values of fracture energy were calculated from the peel

forces, using three different assumptions: that the layers were

inextensible (Equation 7), that they were extensible but linearly

elastic (Equation 6), and that they were non-linearly elastic

(Equation 5). The results are plotted in Figure 6 against the

thickness of the rubber layer being peeled away. As can be seen, the

results calculated assuming zero extension or assuming linear

elasticity are not constant. Values obtained with thin rubber layers

are considerably smaller than those from thick layers. On the other

hand, values calculated taking into account the non-linearly elastic

character of rubber are constant over the whole thickness range. We
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rubber strips for various amounts of prestrain e*. When the strips

were assumed to be linearly-elastic the results were not constant but

depended on the strip thickness, especially for thin strips. On the

other hand, when non-linearly elastic behavior of the strips was taken

into account, then the calculated values were approximately constant,

independent of the strip thickness. Moreover, the average value,

2about 210 J/m2 , was close to that obtained from peeling and lap shear

measurements on unprestressed joints, Figures 6 and 7.

(b) Lap shear strength

In order to calculate fracture energy for prestressed lap shear

joints in the most general case, Equation 11, it is necessary to

deduce the strains e and e2 in the two bonded strips under the

failure force F. This was done by trial and error, using Equations

12 and 13. Values obtained in this way are given in Table 4, together

with the results for G calculated from them. As can be seen in-a

Figure 9, these values of Ga are approximately constant at about 160 +

220 J/m , close to the value deduced from peeling measurements, and

independent of the strip thickness, whereas values calculated on the

basis of linearly elastic behavior using Equation 14 are much smaller

for thin strips and not independent of the strip thickness. We

conclude that it is necessary to take into account non-linear elastic

behavior of rubber strips to predict the effect of large prestrains on

peel and lap shear strengths.

(c) Strengthening effect of prestresses

As shown by the failure forces given in Tables 3 and 4,
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conclude that it is necessary to employ the accurate non-linear

relationship, Equation 5, in order to obtain correct values for the

fracture energy from peeling experiments with unreinforced rubber

strips, even when the thickness is 3 mm or more.

(b) Lap shear strength

Values of fraccure energy calculated from lap shear measurements

are plotted in Figure 7. Again, results obtained assuming linear

elasticity are found to depend upon the thickness of the adhering

rubber layers up to about 8 mm. When a non-linear relation is used

to deduce the fracture energy, the results become constant over the

whole thickness range, and they agree well with the corresponding

2value obtained from peeling measurements, about 180 J/m

We conclude that the present well-bonded rubber layers stretch too

much in peeling and lap shear measurements for the elementary theory

of fracture based on linear elasticity to apply. Instead it is

necessary to take into account non-linear behavior in tension to

obtain accurate values of the work of detachment.

(ii) Joints prepared with a prestress

(a) Peel strength

Peel forces for prestressed joints prepared using strips of a wide

range of thickness are given in Table 3, with values of fracture

energy G a calculated from them assuming that the strips were linearly

elastic, Equation 4, or that they were non-linearly elastic, Equation

3. The results are plotted in Figure 8 against the thickness of the
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rubber strips for various amounts of prestrain e*. When the strips

were assumed to be linearly-elastic the results were not constant but

depended on the strip thickness, especially for thin strips. On the

other hand, when non-linearly elastic behavior of the strips was taken

into account, then the calculated values were approximately constant,

independent of the strip thickness. Moreover, the average value,

about 210 J/m 2 , was close to that obtained from peeling and lap shear

measurements on unprestressed joints, Figures 6 and 7.

(b) Lap shear strength

In order to calculate fracture energy for prestressed lap shear

joints in the most general case, Equation 11, it is necessary to

deduce the strains e and e2 in the two bonded strips under the

failure force F. This was done by trial and error, using Equations

12 and 13. Values obtained in this way are given in Table 4, together

with the results for G calculated from them. As can be seen in-a

Figure 9, these values of G are approximately constant at about 160 +-a
220 J/m , close to the value deduced from peeling measurements, and

independent of the strip thickness, whereas values calculated on the

basis of linearly elastic behavior using Equation 14 are much smaller

for thin strips and not independent of the strip thickness. We

conclude that it is necessary to take into account non-linear elastic

behavior of rubber strips to predict the effect of large prestrains on

peel and lap shear strengths.

(c) Strengthening effect of prestresses

As shown by the failure forces given in Tables 3 and 4,
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prestressed joints were more resistant to separation than

non-prestressed joints. The maximum increase in strength was about 50

percent. But, at a critical amount of prestrain, denoted in Table 4

by g, the joints spontaneously separated on releasing them from the

prestress. Values of fracture energy have been calculated from the

corresponding pre-tension forces F*, using Equation l. They are

included in Table 4. They are seen to be in good agreement with

values determined directly from measurements of failure forces. Thus,

the maximum amount of prestress that a joint can withstand is also

given correctly by fracture energy considerations.

5. Conclusions

Peel and lap shear debonding forces are related by a common

failure criterion: that a critical amount of energy Ga is needed for

debonding. This conclusion of Kendall has been verified again for

adhering rubber strips of a wide range of thickness, bonded together

with various amounts of residual stress. But it has proved necessary

to take into account both the relatively large strains that rubber can

undergo during detachment, especially when the strips are thin, and

the non-linear elastic response of rubber. Otherwise, the inferred

fracture energies are too small, by factors of up to 3 or 4 in the

present experiments.
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Table 1 : Peeling Results

Strip Failure Elongation Fracture energy Ga [J/m 2]

thickness force calc. from

t [mm] F [N) e (Eq. 7) (Eq. 6) (Eq. 5)

0.64 6.1 0.71 89 145 12

0.91 6.9 0.57 100 154 193

1.23 9.4 0.77 138 163 175

2.10 10.2 0.27 150 179 195

4.31 12.2 0.28 180 186 188

Table 2: Lap Shear Results

Strip Failure Elongation Fracture energy Ga  [J/m 2

thickness force caic. from

t [mm] F [N] e (Eq. 16) (Eq. 15)

0.58 9.6 1.42 100 175

0.88 12.5 0.92 112 173

2.10 21.5 0.77 138 189

4.30 32.4 0.57 153 169

12.50 58.1 0.25 169 172
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Tabie 3: Peeling Forces for Pre-stressed Joints

Strip Prestrain Preload Failure Fracture energy Ga  [J/m ]

thickness force calc. from

t [mm] e F [N] F [N] (Eq. 4) (Eq. 3)

0.85 0.25 3.7 7.9 126 184

0.30 4.3 9.0 142 195

0.60 6.6 12.0 169 239

1.20 0.25 5.3 10.3 155 189

0.30 5.9 11.9 181 218

0.60 9.2 15.2 202 247

2.10 0.25 9.2 13.6 188 215

0.30 10.5 15.9 217 234

4.30 0.10 6.2 12.4 183 200
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Table 4: Lap Shear Failure Forces for i re-stressed Joints

Strip Pre- Failure Failure Fracture energy Ga [J/m 2

thickness strain strains forces [N3 calc. from
.

t [mm] e e1  e2  F F1  F2  (Eq. 14) (Eq. 11)

(calc.) (meas.) (calc.)

0.85 0.25 0.44 0.80 13.2 5.5 7.7 53 139

0.30 0.50 0.95 14.6 6.1 8.5 56 127

0.60 0.55 1.48 17.9 6.4 11.5 69 171

0.80 a  202b

1.25 0.25 0.48 0.85 20.1 8.6 11.5 91 135

0.30 0.61 1.09 23.6 9.9 13.7 128 189

0.65 a  209 b

2.10 0.25 0.42 0.78 31.9 13.1 18.8 128 129

0.30 0.45 0.89 34.0 13.8 20.2 132 192

0.45 a  2 0 9b

4.30 0.10 0.22 0.34 40.7 16.9 23.8 155 191

0.25 a  1 6 2b

a: prestrain ec causing spontaneous debonding on release.

b: calculated from Eq. 11, putting F = e = U = 0; U + (1 + e ) Ue= Ue 2 e 1
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dxF

Figure 1
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